Autumn Term 2

P1 Conservation and dissipation of energy

Aiming for Grade 4

Extended Homework Assignment

Name:	 	
Set:		

Instructions

A printed copy should be handed into your teacher.

The knowledge required to complete this assignment will be supported in class in lessons of the half term.

worked example 1

Calculate the change in gravitational potential energy of a mountaineer who has climbed a mountain that is 3000 m high. The mass of the mountaineer is 70 kg. g = 10 N/kg.

Step 1: Write down what you know.

change in height $h = 3000 \,\mathrm{m}$

mass m = 70 kg

g = 10 N/kg

Step 2: Use the equation for E_p to find gravitational potential energy.

$$E_p = m \times g \times h$$

$$=70 \text{ kg} \times 10 \text{ N/kg} \times 3000 \text{ m}$$

= 2100000 J

Worked example 2

Calculate the kinetic energy of a sprinter of mass 70 kg who is running at 10 m/s.

Step 1: Write down what you know.

mass m = 70 kg

speed v = 10 m/s

Step 2: Use the equation for E_k to find kinetic energy.

$$E_{k} = \frac{1}{2} \times m \times v^{2}$$
$$= \frac{1}{2} \times 70 \times (10)^{2}$$
$$= 3500 \text{ J}$$

Tasks

Power and efficiency

A Here are some electrical items with the energy that they transfer per second. Complete the table, and add the unit of power.

Item	Job it does	Energy transferred	Time	Power in
kettle		3000 J	2 seconds	
light bulb		6000 J	1 minute	
radio		600 J	30 seconds	
oven		10 kJ	1 second	

Questions

1	а	List the different types of energy store.	
			(2 marks)

	D	of the Task:	npiete these sentences for the mo	delling in Part I	
		i In the torch the energy is tra	ansferred by an electric current /	a force.	(1 mark)
		ii When the cyclist moves down current / a force.	wnhill energy is transferred by an	electric	(1 mark)
Ca	lcu	lating energy			
2					
	а	Describe what we mean by 'wo	rk' in science.		
					(1 morls)
				•••••	(1 mark)
	b	Calculate the work you did lifting the ball 1 m. You need to calculate the weighthe mass. $g = 10 \text{ N/kg}$. Mass of ball = 0.25kg Weight = mass $\times g$.			ball from
					(2 marks)
	С	Suggest and explain what happ of onto the floor.	pens when you drop a ball into sar	d instead	,
					(2 marks)
	d	•	dropped by a student and reache ound. Calculate the kinetic energy	•	
					(2 marks)
3	3 A student drops a spring onto the ground and the spring compresses. The spring constant of the spring is 100 N/m. You will need to use the equation:				, ,
	ela	astic potential energy $E_{\rm e}$ (J) = $\frac{1}{2}$	\times spring constant k (N/m) \times extens	$sion^2 e^2 (m^2)$.	
		emember that the extension shou			
	Co	emplete the table.			(2 marks)
		Height dropped from in m	Compression of spring in cm	E _e (J)	
		1.00	2.0		
		0.50	1.3		
		0.25	1.0		
Pο	Power and efficiency				
4		rite down two equations that you	can use to calculate nower		
7	v v 1	no domi two oquations that you	can doo to calculate power.		
				•••••	
					(2 marks)

5		each of the following situations write down and explain which student is pre powerful. You do not need to do any calculations.	
	а	Student A takes 25 seconds to lift 10 books onto a shelf. Student B takes 15 seconds to lift the same books onto the shelf.	
			(2 marks)
	b	Student A transfers 10 kJ swimming for 5 minutes, and Student B transfers 8 kJ swimming for the same amount of time.	
			(2 marks)
6	Ex	plain the difference between an efficient and an inefficient appliance.	(= ::::::::::)
			(1 mark)
7	ca	r every 100 J of energy contained in the chemical store of petrol used by a r, only 20 J is transferred to a kinetic store. About 50 J is transferred by ating to the surroundings, and the remainder is transferred by sound. Calculate how much energy is transferred as sound.	
	•		(4
	b	Calculate how much energy is wasted in total.	(1 mark)
			(1 mark)
	С	Calculate the efficiency of the car.	,
			(3 marks)
	d	A different car engine transfers 750 J to a kinetic store from the 1000 J supplied in fuel. Is this car more or less efficient? State your answer and explain why.	
			(3 marks)