
	V								
	The	Crust	Varies in thickness (5-10km) beneath the ocean. Made up of several large plates.	Mantle —	c				
	The Mantle		Widest layer (2900km thick). The heat and pressure means the rock is in a liquid state that is in a state of convection.		Core				
	The Inner and outer Core		Hottest section (5000 degrees). Mostly made of iron and nickel and is 4x denser than the crust. Inner section is solid whereas outer laver is liquid.						
Convection Currents									
	The crust is divided into tectonic plates which are moving due to convection currents in the mantle.								
	1	Radioactive decay of some of the elements in the core and mantle generate a lot of heat.							
	2	When lowe become les	t up they						
	3	As they move towards the top they cool down, become more dense and slowly sink.							
	4	These circular movements of semi-molten rock are convection currents							
	5	Convection currents create drag on the base of the tectonic plates							

The Structure of the Earth

These ar

Volcanic Hazards

Small pieces of pulverised rock and glass which are thrown into the atmosphere.

Sulphur dioxide, water vapour and carbon dioxide come out of the volcano.

A volcanic mudflow which usually runs down a valley side on the volcano. A fast moving current of super-heated gas and ash (1000°C). They travel at 450mph.

A thick (viscous) lava fragment that is ejected from the volcano.

Managing Volcanic Eruptions

Wandging Volcanie Eruptions					
Warning signs	Monitoring techniques				
Small earthquakes are caused	as Seismometers are used to detect				
magma rises up.	earthquakes.				
Temperatures around the volc	Thermal imaging and satellite				
rise as activity increases.	cameras can be used to detect hea				
hise as activity mereases.	around a volcano.				
When a volcano is close to erup	Gas samples may be taken and				
it starts to release gases.	chemical sensors used to measure				
it starts to release gases.	sulphur levels.				
Preparation					
Creating an exclusion zone aro	und Being ready and able to evacuate				
the volcano.	residents.				
Having an emergency supply	of Trained emergency services and a				
basic provisions, such as foo	d good communication system.				
	Earthquake Management				

What is a Natural Hazard

Pyroclastic

A natural hazard is a natural process which could cause death, injury or disruption to humans, property and possessions.

Geological Hazard	MeteorologicalHazard
re hazards caused by land and tectonic processes.	These are hazards caused by weather and climate.

Causes of Earthquakes

Earthquakes are caused when two plates become locked causing friction to build up. From this stress, the pressure will eventually be released, triggering the plates to move into a new position. This movement causes energy in the form of seismic waves, to travel from the focus towards the epicentre. As a result, the crust vibrates triggering an earthquake.

The point directly above the focus, where the seismic waves reach first, is called the EPICENTRE.

SEISMIC WAVES (energy waves) travel out from the focus.

The point at which pressure is released is called the FOCUS.

PREDICTING

Methods include:

• Satellite surveying (tracks changes in the earth's surface)

prevailing wind

landslide

ovroclasti

- Laser reflector (surveys movement across fault lines)
- Seismometer
- Scientists also use seismic records to predict when the next event will occur.

PROTECTION

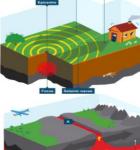
You can't stop earthquakes, so earthquake-prone regions follow these three methods to reduce potential damage:

- Building earthquake-resistant buildings
- Raising public awareness
- Improving earthquake prediction

Types of Plate Margins Destructive Plate Margin

When the denser plate subducts beneath the other, friction causes it to melt and become molten magma. The magma forces its ways up to the surface to form a volcano. This margin is also responsible for devastating earthquakes.

and this causes them to move.


Constructive Plate Margin

Here two plates are moving apart causing new magma to reach the surface through the gap. Volcanoes formed along this crack cause a submarine mountain range such as those in the Mid Atlantic Ridge.

Conservative Plate Margin

A conservative plate boundary occurs where plates slide past each other in opposite directions, or in the same direction but at different speeds. This is responsible for earthquakes such as the ones happening along the San Andreas Fault, USA.

	Convention Currents	ÛÛ	
			Manti
es			

/ILD WORLD

HIC CASE STUDY

